23 research outputs found

    Take the Lead: Toward a Virtual Video Dance Partner

    Get PDF
    My work focuses on taking a single person as input and predicting the intentional movement of one dance partner based on the other dance partner\u27s movement. Human pose estimation has been applied to dance and computer vision, but many existing applications focus on a single individual or multiple individuals performing. Currently there are very few works that focus specifically on dance couples combined with pose prediction. This thesis is applicable to the entertainment and gaming industry by training people to dance with a virtual dance partner. Many existing interactive or virtual dance partners require a motion capture system, multiple cameras or a robot which creates an expensive cost. This thesis does not use a motion capture system and combines OpenPose with swing dance YouTube videos to create a virtual dance partner. By taking in the current dancer\u27s moves as input, the system predicts the dance partner\u27s corresponding moves in the video frames. In order to create a virtual dance partner, datasets that contain information about the skeleton keypoints are necessary to predict a dance partner\u27s pose. There are existing dance datasets for a specific type of dance, but these datasets do not cover swing dance. Furthermore, the dance datasets that do include swing have a limited number of videos. The contribution of this thesis is a large swing dataset that contains three different types of swing dance: East Coast, Lindy Hop and West Coast. I also provide a basic framework to extend the work to create a real-time and interactive dance partner

    Paleogene Radiation of a Plant Pathogenic Mushroom

    Get PDF
    Background: The global movement and speciation of fungal plant pathogens is important, especially because of the economic losses they cause and the ease with which they are able to spread across large areas. Understanding the biogeography and origin of these plant pathogens can provide insights regarding their dispersal and current day distribution. We tested the hypothesis of a Gondwanan origin of the plant pathogenic mushroom genus Armillaria and the currently accepted premise that vicariance accounts for the extant distribution of the species. Methods: The phylogeny of a selection of Armillaria species was reconstructed based on Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI). A timeline was then placed on the divergence of lineages using a Bayesian relaxed molecular clock approach. Results: Phylogenetic analyses of sequenced data for three combined nuclear regions provided strong support for three major geographically defined clades: Holarctic, South American-Australasian and African. Molecular dating placed the initial radiation of the genus at 54 million years ago within the Early Paleogene, postdating the tectonic break-up of Gondwana. Conclusions: The distribution of extant Armillaria species is the result of ancient long-distance dispersal rather than vicariance due to continental drift. As these finding are contrary to most prior vicariance hypotheses for fungi, our result

    Evolutionary history of Serpulaceae (Basidiomycota): molecular phylogeny, historical biogeography and evidence for a single transition of nutritional mode

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The fungal genus <it>Serpula </it>(Serpulaceae, Boletales) comprises several saprotrophic (brown rot) taxa, including the aggressive house-infecting dry rot fungus <it>Serpula lacrymans</it>. Recent phylogenetic analyses have indicated that the ectomycorrhiza forming genera <it>Austropaxillus </it>and <it>Gymnopaxillus </it>cluster within <it>Serpula</it>. In this study we use DNA sequence data to investigate phylogenetic relationships, historical biogeography of, and nutritional mode transitions in Serpulaceae.</p> <p>Results</p> <p>Our results corroborate that the two ectomycorrhiza-forming genera, <it>Austropaxillus </it>and <it>Gymnopaxillus</it>, form a monophyletic group nested within the saprotrophic genus <it>Serpula</it>, and that the <it>Serpula </it>species <it>S. lacrymans </it>and <it>S. himantioides </it>constitute the sister group to the <it>Austropaxillus</it>-<it>Gymnopaxillus </it>clade. We found that both vicariance (Beringian) and long distance dispersal events are needed to explain the phylogeny and current distributions of taxa within Serpulaceae. Our results also show that the transition from brown rot to mycorrhiza has happened only once in a monophyletic Serpulaceae, probably between 50 and 22 million years before present.</p> <p>Conclusions</p> <p>This study supports the growing understanding that the same geographical barriers that limit plant- and animal dispersal also limit the spread of fungi, as a combination of vicariance and long distance dispersal events are needed to explain the present patterns of distribution in Serpulaceae. Our results verify the transition from brown rot to ECM within Serpulaceae between 50 and 22 MyBP.</p

    Phylogeography of western Pacific Leucetta 'chagosensis' (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia)

    No full text
    Leucetta ‘chagosensis’ is a widespread calcareous sponge, occurring in shaded habitats of Indo-Pacific coral reefs. In this study we explore relationships among 19 ribosomal DNA sequence types (the ITS1-5.8S–ITS2 region plus flanking gene sequences) found among 54 individuals from 28 locations throughout the western Pacific, with focus on the Great Barrier Reef (GBR). Maximum parsimony analysis revealed phylogeographical structuring into four major clades (although not highly supported by bootstrap analysis) corresponding to the northern/central GBR with Guam and Taiwan, the southern GBR and subtropical regions south to Brisbane, Vanuatu and Indonesia. Subsequent nested clade analysis (NCA) confirmed this structure with a probability of > 95%. After NCA of geographical distances, a pattern of range expansion from the internal Indonesian clade was inferred at the total cladogram level, as the Indonesian clade was found to be the internal and therefore oldest clade. Two distinct clades were found on the GBR, which narrowly overlap geographically in a line approximately from the Whitsunday Islands to the northern Swain Reefs. At various clade levels, NCA inferred that the northern GBR clade was influenced by past fragmentation and contiguous range expansion events, presumably during/after sea level low stands in the Pleistocene, after which the northern GBR might have been recolonized from the Queensland Plateau in the Coral Sea. The southern GBR clade is most closely related to subtropical L. ‘chagosensis’, and we infer that the southern GBR probably was recolonized from there after sea level low stands, based on our NCA results and supported by oceanographic data. Our results have important implications for conservation and management of the GBR, as they highlight the importance of marginal transition zones in the generation and maintenance of species rich zones, such as the Great Barrier Reef World Heritage Area
    corecore